時間:数1A全体は必答の大問2つ、選択の大問2つで70分。第1,第2問は必答の数1の小問集合、第3,4,5問は、数Aの大問から2つを選択する形となります。数1Aは、第1,第2問に合計得点の60%が割り振られており、単純計算で全体70分のうちの60%、42分が第1,第2問に使えるため、第1問は20分程度で解いていく計算になります。目安となる時間配分をしたうえで、得意な単元の問題をいかに素早く解き、苦手な単元の問題を解く時間を残せるかが重要となります。
得点配分:数1A全体で100点。このうち必答の第1,第2問の配点はそれぞれ30点、選択の第3,4,5問の配点はそれぞれ20点となっています。つまり、第一問には30点が割り振られています。
設問形式:
・大問は、更に2つ~3つ程度の中問に分かれ、それらがまたいくつかの小問から成っています。試験時間に対し、問題の分量は多いです。
・各小問は、空所補充、記号選択式の形式で出題されています。
傾向:
・第一問は、数1の問題になっています。
・出題分野としては、数と式、三角比の応用、2次関数などが多いようです。(2023年度や2022年度は数と式、三角比の応用に関する問題、2019年度や2018年度は数と式、二次関数の問題が出題されています。)
・目的に応じて数・式、図、表、グラフなどを活用する能力を求められます。
・全体的に、難解な問題ではなく、数1の基本的な知識が浅く広く問われることになります。
方法:
・数1の基本をしっかり理解していればほとんどの問題は解けるはずです。例えば、不等式や二次関数の性質、図形の性質や余弦定理、正弦定理などの三角関数の諸定理はしっかり理解しておいてください。
・不等式や二次関数の計算でミスを減らす。
(不等式については、式変形に伴う不等号の向きの変化や式に出てくる値の符号に注意して計算ミスを減らすようにしましょう。二次関数は、式の展開や因数分解など、方程式の式変形をミスすることなくこなし、式の場合分けなどもこなせるようにしましょう。)
・図形の性質を考察できるようにしましょう。
(与えられた図形に対し、三角関数の性質を応用することで、その図形の性質を考察する問題が出題されます。どれも三角関数の基本的な性質が理解できていれば解ける問題なので、三角関数の基本的な性質を理解し、余弦定理、正弦定理などの定理もすぐ使えるようにしておきましょう。)
他言無用の最終兵器:
・日常的な物事を数学的に考える問題に注意。
(センター試験と共通テストの違いとして、共通テストでは日常的な物事を数学的に考える問題が出題されるようになりました。問題それ自体はセンター試験と比較して難しくなっているわけではありませんが、問題文から数学的な問題を取り出す必要があるため、読解が苦手な人にとってはセンター試験と比べて難易度が上がったと言えます。このような問題を解くためには、普段から本を読むなど、読解力の底上げをしておくことや、共通テストの過去問を解いていくことで問題形式に慣れることが対策になると考えられます。例えば、2022年度の第一問の[2]は地図の縮尺に関する会話からの問題、2021年度の第一問の[1]の(3)は与えられた方程式の考察となる会話が問題を解くヒントとなっています。例:2022年度の第一問の[2])